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 Environmental filters and biotic interactions drive species richness and composition in 
ecotone forests of the northern Brazilian Amazonia

Filtros ambientais e interações bióticas conduzem a riqueza e composição de espécies 
em florestas de ecótono do norte da Amazônia brasileira

Williamar Rodrigues SilvaI  | Pedro Aurélio Costa Lima PequenoII  | Hugo Leonardo Sousa FariasI  |
 Valdinar Ferreira MeloIII  | Carlos Darwin Angulo VillacortaIV  | Lidiany Camila Silva CarvalhoV  |

 Ricardo Oliveira PerdizII  | Arthur Camurça CitóII  | Reinaldo Imbrozio BarbosaII 

IUniversidade Federal de Roraima. Programa de Pós-Graduação em Recursos Naturais. Boa Vista, Roraima, Brasil
IIInstituto Nacional de Pesquisa da Amazônia. Boa Vista, Roraima, Brasil

IIIUniversidade Federal de Roraima. Departamento de Solos e Engenharia Agrícola. Boa Vista, Roraima, Brasil
IVEstación Experimental Agraria San Ramón. Dirección de Recurso Geneticos y Biotecnología. Instituto Nacional de Innovación Agrária. 

Yurimaguas, Peru
VUniversity of Exeter. Exeter, Inglaterra

Abstract: The structure of tree communities in tropical forests depends on environmental filters and biotic interactions such as competition 
and facilitation. Many ecotone forests in Northern Amazonia are intriguingly populated by tree assemblages characterized by distinct 
abundances of a single species, Peltogyne gracilipes (Leguminosae). It is unclear whether this pattern solely reflects environmental 
filters or also antagonistic interactions among species with similar habitat requirements. The aim of this study was to determine 
the response of species richness and composition to environmental filters, and analyze the role of P. gracilipes in structuring tree 
communities in ecotone forest areas of the Northern Brazilian Amazonia. We sampled 129 permanent plots along a hydro-edaphic 
gradient. All arboreal individuals with stem diameter ≥10 cm were measured and identified. Multiple regressions were performed 
to test the effects of environmental filters, and abundance of P. gracilipes on the tree species richness and composition. Species 
richness and composition responded to the same filters which, in turn, affected species composition directly and indirectly, through 
the abundance of P. gracilipes. Our results indicate that both abiotic filters and biotic interactions shape the studied tree communities. 
P. gracilipes can be considered an indicator species of hydro-edaphic conditions, but also is itself a driver of tree community structure.

Keywords: Community structure. Maracá Island. Roraima. Seasonal forests. Tree species.

Resumo: Estrutura de comunidades de árvores em florestas tropicais depende de filtros ambientais e interações abióticas, como competição 
e facilitação. Muitas florestas de ecótono no norte da Amazônia são intrigantemente povoadas por assembleias de árvores, 
caracterizadas por abundâncias distintas de uma única espécie, Peltogyne gracilipes (Leguminosae). Não está claro se este padrão 
isoladamente reflete filtros ambientais ou também interações antagônicas entre espécies com requisitos de habitats semelhantes. O 
objetivo deste estudo foi determinar a resposta da riqueza e composição de espécies aos filtros ambientais, analisando o papel de P. 
gracilipes na estruturação de comunidades arbóreas em áreas de floresta de ecótono do norte da Amazônia brasileira. Amostramos 
129 parcelas permanentes ao longo de um gradiente hidro-edáfico. Todos os indivíduos arbóreos com diâmetro do caule ≥ 10 cm 
foram medidos e identificados. Regressões múltiplas foram realizadas para testar os efeitos dos filtros ambientais, e da abundância 
de P. gracilipes na riqueza e composição das árvores. Riqueza e composição de espécies responderam aos mesmos filtros, os quais, 
por sua vez, afetaram a composição das espécies direta e indiretamente, por meio da abundância de P. gracilipes. Nossos resultados 
indicam que tanto os filtros abióticos quanto as interações bióticas moldam as comunidades arbóreas estudadas. P. gracilipes pode 
ser considerada uma espécie indicadora de condições hidroedáficas, mas também é ela própria uma impulsionadora da estrutura 
da comunidade arbórea.
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INTRODUCTION
Amazon region is recognized as the largest continuous 
area of tropical forest on Earth, holding a rich tree flora 
estimated at 15,000 species (ter Steege et al., 2020). 
The global importance of the Amazon is reflected in their 
ecosystem services provided by the forest standing, including 
carbon stocks, hydrological cycle and conservation of 
biodiversity (Fearnside, 2013; Le Clec’h et al., 2019). The 
region concentrates a huge diversity of forest ecosystems 
conditioned by different environmental filters and biotic 
factors which do not allow simplistic assessments for use 
in ecosystem services policies or environmental modeling 
(Ometto et al., 2014; Tejada et al., 2020). In general, species 
richness and composition of tree communities has been used 
to create an identity to the regional forest ecosystems and 
associate them with studies related to ecosystem functions 
and processes (Gomes et al., 2018; F. R. Costa et al., 2020; 
Sousa et al., 2020). Although the number of investigations 
has grown in recent years, there are still spatial gaps that 
need to be filled to improve our understanding of how 
environmental filters act synergistically with biotic factors, 
promoting variations in the species richness and composition 
that model ecosystem identity for the different forest types 
in the Amazon (Oliveira-Filho et al., 2021). This is an 
environmental key issue with direct implications for theories 
of species coexistence, natural resource management, and 
conservation in Amazon (Householder et al., 2021).

Most ecological studies have been done in areas 
closer to the Amazon river channel (central Amazonia), 
and they have shown that edaphic and topographic filters 
affect the species richness and composition of plants at 
different spatial scales (Toledo et al., 2017; Figueiredo et al., 
2018; Oliveira et al., 2019). Main analyses have shown that 
species distribution is related mainly to soil macronutrient 
and clay contents (Fine et al., 2005; Quesada et al., 2010; 
Moser et al., 2014), which vary along topographic gradients 
(Bohlman et al., 2008; Zuleta et al., 2020). It is assumed 
that these factors represent the main environmental 
conditions along which plant communities are structured 

in Amazonia (F. V. Costa et al., 2015). Likewise, soil 
micronutrients also function as environmental filters which 
can affect species distribution and community structure 
(Baldeck et al., 2013). Soil micronutrient availability can 
be both limiting and toxic to plants (Sperotto et al., 2014), 
or even affect indirectly the availability of other nutrients 
that limit plant growth even on more fertile tropical soils 
(Kaspari et al., 2008; Barron et al., 2009).

Despite these findings on areas closer to the Amazon 
river channel, it is unclear what is relative importance of 
different environmental conditions for the structure of tree 
communities in terms of species richness and composition 
in the ecotones dispersed on peripheral areas of Amazonia 
(Canetti et al., 2019). Ecotone is a known general term 
to define a multi-dimensional environmentally stochastic 
interaction zone between two or more ecological systems or 
communities (Hufkens et al., 2009). In Amazon region, they 
are extensive ecosystems located in the peripheral northern 
and southern borders representing transition zones between 
large open vegetation (savannas) and different forest types, 
which are of great importance from the perspective of 
biological conservation (Santos et al., 2013; Marques 
et al., 2019). The lack of better clarity on how species 
richness and composition are structured in the Amazonian 
ecotone areas are mainly due to the lack of spatialization of 
investigations relating both biotic and environmental drives 
acting synergistically in the plant distribution. The paucity of 
studies is more noticeable in Northern Brazilian Amazonia, 
where ecotone forests have been increasingly threatened 
by anthropogenic disturbances as deforestation and fires 
(Barni et al., 2015; Almeida et al., 2016).

In peripheral zone of Northern Amazonia, a region 
encompassing much of the Brazilian state of Roraima, at 
the boundary with Venezuela and Guyana, the ecotone 
represent a wide transition area between the large Rio 
Branco-Rio Rupununi savanna and continuous areas of 
different forest types (Desjardins et al., 1996; Barbosa et 
al., 2007). The continuous forest area is formed by an 
interaction range comprising ombrophilous forests, seasonal 
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forests and some few enclaves of savanna dispersed on 
hydro-edaphic gradients (Milliken & Ratter, 1998; Carvalho 
et al., 2018; W. Silva et al., 2019b). Peltogyne gracilipes 
Ducke (Leguminosae), a tree endemic species occurring 
along whole ecotone zone, can dominate forest stands until 
reaching monodominant status (Nascimento & Proctor, 1997; 
Nascimento et al., 2007). Monodominance by P. gracilipes 
was first documented in 1924-25 (ter Steege et al., 2019), 
and it has been related to hydro-edaphic conditions, such as 
poorly drained soils and high Fe+² content (Nascimento et 
al., 2017; Villacorta, 2017). However, it is unclear whether 
this pattern solely reflects exclusion of most tree species 
from such areas due to their physiological requirements, or 
whether agonistic interactions with P. gracilipes can exclude 
other species from sites where they could occur otherwise.

To better understand the effects of environmental 
filters and biotic interactions with P. gracilipes in structuring 
tree communities in ecotone forests of Northern Amazonia, 
we tested the hypothesis that hydro-edaphic gradients 
shape species richness and composition both directly and 
indirectly. Direct effects would result from species sorting 
along hydro-edaphic gradients due to niche partitioning 
and local adaptation, whereas indirect effects would 
result from environmentally-driven changes in P. gracilipes 
abundance, which would affect the abundances of other 
species due to P. gracilipes being a better competitor for soil 
resources under restrictive soil conditions. We predicted 
that altitude – a topographic proxy indicating the risk of 
seasonal flooding – and soil nutrients content would be the 
main drivers of P. gracilipes abundance, species richness and 
species composition, whereas P. gracilipes would have a 
negative effect on species richness and would change species 
composition independently of environmental conditions.

MATERIAL AND METHODS

STUDY AREA
This study was performed in eastern of Maracá Island, 
the largest part of the Maracá Ecological Station (3° 15’ 

- 3° 35’ N and 61° 22’ - 61° 58’ W), a conservation area 
managed by the Chico Mendes Institute for Biodiversity 
Conservation (ICMBio) located in state of Roraima, 
Northern Brazilian Amazonia (Figure 1). Maracá has moist 
tropical climate, and it is situated in a region characterized 
by the transition between savanna (Aw) and monsoon 
(Am) climatic subtypes in Köppen’s classification (Barbosa, 
1997; Barni et al., 2020). Average annual temperature and 
rainfall are 26 °C and 2.086 ± 428 mm, respectively, with 
a rainier period from May to August, and a drier period 
from December to March (Couto-Santos et al., 2014). 
The vegetation of Maracá Island reflects the climatic and 
biogeographic transition zone in which it is inserted (Milliken 
& Ratter, 1998), presenting a mosaic of ombrophilous and 
seasonal forests spreader over a hydro-edaphic gradients 
which are related to the structure, species richness and 
composition of each forest type (Robison & Nortcliff, 1991; 
Carvalho et al., 2018). 

SAMPLING DESIGN
We sampled arboreal individuals (trees + palms) in 129 
permanent plots (10 m x 50 m; 6.45 ha) spread over six 
East-West trails belonging to a sampling grid established 
by the Brazilian Biodiversity Research Program (PPBio) 
on the eastern of Maracá Island (PPBio, n.d.). The PPBio 
grid (25 km2) is a mesoscale sample of the ecotone forest 
covering eastern of Maracá Island (mosaic of ombrophilous 
and seasonal forests). It is a representative area showing us 
how environmental filters and biotic factors act conditioning 
variation in species richness and composition in the studied 
ecotone zone. Each trail is 5 km long, along which 18-29 
plots were established in each one with at least a distance of 
150 m between them. This sampling design aimed at capturing 
small-scale structural variation in tree communities of this 
ecotone forest (W. Silva et al., 2019b). Swamps and enclaves 
of savannas were not considered in this study. All plots were 
georeferenced in UTM coordinates and had their altitudes 
determined topographically (Vale & Romero, 2015). The 
permanent plots have been measured annually since 2015. 
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Figure 1. Study area indicating the grid of the Biodiversity Research Program (PPBio) and Geographic location of 129 permanent plots on 
the eastern of Maracá Island, state of Roraima, Northern Brazilian Amazonia. Map: A. C. Citó (2020).

All biometric data can be freely accessed by the Mendeley 
Data repository (W. Silva et al., 2019a), and ForestPlots 
platform (ForestPlots.NET, n.d.) under the codes ETA, ETB, 
ETC, ETD, ETE and ETF.

FOREST INVENTORY
We obtained tree data using the protocol for forest 
inventory in PPBio research sites (Castilho et al., 2014). We 
sampled all trees and palms with stem diameter ≥ 10 cm 
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(hereafter only trees), within each of the 129 sampling plots. 
When trees had deformities or aerial roots, stem diameter 
was measured 0.5 m above these features (cf. Castilho et 
al., 2014). Measurements were taken using a diameter tape 
(model 283D/5m). 

All individuals were morphotyped based on field 
observations and collection of biological material between 
15-23/12/2017 for posterior taxonomic identification. 
Collected material represented most sampled species and 
were deposited in the herbarium of the Instituto Nacional 
de Pesquisas da Amazônia (INPA), Museu Integrado de 
Roraima (MIRR) and Universidade Federal Roraima (UFRR) 
(acronyms follow Thiers, 2020 [continuously updated]). 
Species identification was mainly performed by A. T. 
Mello by comparison with material from INPA’s botanical 
collection, with further checking by R. O. Perdiz and R. I. 
Barbosa using the botanical collections of INPA, UFRR and 
MIRR, and consultations to the Reflora virtual herbarium 
(Reflora, 2020). Scientific names were verified and 
corrected with reference to the species list of the Brazilian 
Flora (BFG et al., 2015); family-level groupings followed 
APG et al. (2016). A total of 3,040 stems (tree = 2,815; 
palm = 225), corresponding to 140 species (42 botanic 
families) were used in the analysis. Species composition 
by sampling plot is presented in the study of W. Silva et 
al. (2019b), and it is also freely available in the Brazilian 
Biodiversity Information System (W. Silva et al., 2020). 

SOIL SAMPLING AND ANALYSIS 
Soil samples (20-cm deep) were collected at two points 
within each of the 129 sampling plots. The two sub-
samples were mixed forming a compound soil sample and, 
subsequently, each one was air-dried and sieved (2-mm 
mesh size). Physical (soil clay content, %), and chemical 
edaphic variables (contents of available K+, Ca2+, Mg2+, 
P, Fe2+, Zn2+, Mn2+, B and Cu2+, and soil organic matter) 
were obtained using standard protocols (EMBRAPA, 2011). 
All soil data are freely available through Mendeley Data 
repository (Barbosa et al., 2019).

STATISTICAL ANALYSIS
Tree community structure was described as species richness 
(defined as the number of species found in a plot) and 
species composition, defined as the combination of species 
abundances in a plot. The latter was summarized in a single 
variable using the first axis of a Principal Coordinate Analysis 
(PCoA), based on Bray-Curtis dissimilarities computed from 
Hellinger-transformed species abundances (Legendre & 
Legendre, 2012). We considered the following environmental 
variables as potential drivers of tree species abundance: (i) 
altitude (m a.s.l.) as a topographic proxy indicating the risk of 
seasonal flooding, and (ii) edaphic variables such as soil clay 
content (%), soil organic matter, sum of bases (K+, Ca2+, 
Mg2+; cmol kg-1), sum of micronutrients (Fe2+, Zn2+, Mn2+, B 
and Cu2+; mg kg-1), and soil available P (mg kg-1). Clay content 
was adopted to represent the soil texture while bases and 
micronutrients were grouped by both affinity and reaction 
forms in the soil. Correlation matrix of the environmental 
variables used as predictors in the regression models of tree 
community structure was performed (Appendix 1). Multiple 
regressions were performed in three analyses: (i) testing for 
the effects of environmental variables on the abundance of P. 
gracilipes; (ii) testing for the effects of environmental variables 
and P. gracilipes abundance on the richness of remaining 
species; and (iii) testing for the effects of environmental 
variables and P. gracilipes abundance on the composition 
of remaining species, as represented by the first Principal 
Coordinate (PCo1). This allowed us to examine the extent 
to which P. gracilipes could shape community structure on 
its own, independently of environmental variables. Nutrient 
predictors were log-transformed to account for non-linear 
species responses due to strong nutrient limitation when 
their availability is low. Predictor effects were visualized 
using partial residual plots, which control for variation in 
remaining predictors (Breheny & Burchett, 2017). We tested 
spatial autocorrelation among plots showing that there is no 
residual spatial autocorrelation in any of the analyzed models 
because the residuals are independent in analyses involving 
the regression models (Appendix 2). All analyses were 
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performed in R 3.6.3 (R Core Team, 2020), with the aid of 
packages ‘vegan’ for ordination (Oksanen et al., 2015) and 
‘visreg’ for partial residual plots to visualize predictor effects 
(Breheny & Burchett, 2017).

RESULTS

RESPONSE OF P. GRACILIPES ABUNDANCE TO 
TOPOGRAPHIC AND EDAPHIC VARIABLES
Mean altitude, soil Clay content and sum of micronutrients 
explained 52% of the variation in the abundance of P. gracilipes 

(Table 1). Abundance was lower at both higher altitude 
and soil clay content, but sum of micronutrients had the 
strongest positive effect on P. gracilipes abundance (Figure 
2). Correlation analysis between altitude (topographic 
proxy for drainage) and micronutrients (r = -0.33; P 
< 0.05) was significant as while as clay content and 
micronutrients (r = 0.39; P < 0.05) (Appendix 1). This 
result indicate that environments populated by higher 
abundance of P. gracilipes is characterized by seasonal 
flooding in association with both higher micronutrients 
content and lower soil Clay content.

Response R² Predictor Coefficient t P

Abundance of P. gracilipes 0.52 Intercept - -

Mean altitude -0.15 -3.86 0.001

Clay content -0.19 -2.76 0.006

SOM 0.07 1.30 0.196

Log base sum -0.76 -1.15 0.252

Log P content 0.21 0.82 0.411

Log micronutrient sum 0.03 6,97 0.001

Species richness 0.32 Intercept 6.24 - -

Mean altitude 0.08 1.97 0.050

Clay content -0.04 -0.61 0.539

SOM 0.08 1.46 0.144

Log base sum -0.75 -1.15 0.251

Log P content 0.41 1.63 0.103

Log micronutrient sum 0.00 1.16 0.869

P. gracilipes -0.42 -4.79 0.001

Species Composition (PCo1) 0.80 Intercept -5.59 - -

Mean altitude 8.34 4.85 0.001

Clay content 6.38 2.07 0.039

SOM -1.61 -0.64 0.518

Log base sum -3.13 -1.13 0.259

Log P content 6.30 0.05 0.953

Log micronutrient sum -1.04 -0.04 0.962

P. gracilipes -2.96 -7.90 0.001

Table 1. Multiple regression models relating Peltogyne gracilipes abundance, species richness and species composition to hydro-edaphic 
(soil variables and altitude as a proxy for soil drainage) and biotic drivers in an ecotone landscape in Northern Amazonia (n = 129). 
Bold numbers represent statistically significant effects (P < 0.05).
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RESPONSE OF SPECIES RICHNESS TO 
ENVIRONMENTAL GRADIENTS AND                 
P. GRACILIPES ABUNDANCE
Altitude and the abundance of P. gracilipes together explained 
32% of the variation in tree species richness observed in the 
study area (Table 1). The abundance of P. gracilipes was the 
strongest predictor of tree species richness, which decreased 
with the former (Figure 3A). Moreover, forest stands in 
higher areas tended to have more species (Figure 3B).

RESPONSE OF SPECIES COMPOSITION 
TO ENVIRONMENTAL GRADIENTS AND                 
P. GRACILIPES ABUNDANCE
The joint effect of altitude, soil Clay content and abundance 
of P. gracilipes explained 80% of the strongest pattern of 
change in species composition (as represented by PCo1) 
(Figure 4). Altitude and the abundance of P. gracilipes were 
the strongest predictors of species composition, whereas 
soil Clay content had a more subtle effect (Table 1).

DISCUSSION

EFFECT OF ENVIRONMENTAL VARIABLES ON 
THE ABUNDANCE OF P. GRACILIPES
Our results indicate a strong effect of environmental conditions 
(altitude, soil clay content and sum of micronutrients) on 

the abundance of P. gracilipes. The spatial distribution of 
this species is shaped by different environmental filters in 
the eastern of Maracá Island, supporting the proposals of 
Nascimento and Proctor (1997) and Nascimento et al. 
(2017). Seasonally flooded areas located in bottomlands with 
higher micronutrient content are seemingly more suitable for 
the occurrence of this species in the study area. These findings 
are similar to those of Villacorta (2017), who suggested that 
P. gracilipes would not occur or would have low abundance 
in non-flooded soils, but could become monodominant in 
areas with higher hydro-edaphic restrictions.

Poorly structured soils, low sum of bases content 
and seasonally flooded, as those where P. gracilipes is more 
abundant in eastern Maracá Island, can be considered 
limiting to the growth and survival of other tree species, 
causing root systems to be shorter and underdeveloped 
due to the low tolerance of most species to restrictive 
soils (Gale & Barfod, 1999; Quesada et al., 2012). This 
was also demonstrate by Ramírez-Narváez (2017), who 
found lower root biomass in areas were P. gracilipes is 
more abundant, indicating that this species has greater 
tolerance to environments with stronger hydro-edaphic 
restrictions relative to other species occurring in eastern 
Maracá Island. Thus, higher abundance of P. gracilipes is 
expected in more restrictive environments (e.g. seasonally 
flooded areas) in eastern Maracá Island and, depending 

Figure 2. Relationship between abundance of Peltogyne gracilipes and (A) average altitude (B) clay content and (C) sum of soil micronutrients 
in an ecotonal landscape in Northern Brazilian Amazonia. Each point represents one sampling plot (n = 129). Lines represent regression fits.
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on the prevalence of this species, monodominance can 
result, as discussed by Nascimento and Proctor (1997) 
and Milliken and Ratter (1998).

EFFECT OF ENVIRONMENTAL VARIABLES AND 
ABUNDANCE OF P. GRACILIPES ON SPECIES 
RICHNESS
Our results showed that altitude, used as a topographic 
proxy for risk of seasonal flooding, and the abundance of P. 
gracilipes control tree species richness in the studied area. 
The positive effect of altitude on species richness is related 
to the fact that bottomlands have greater hydro-edaphic 
restrictions (hydromorphic; sum of bases-poor soils), as also 
observed by Nascimento et al. (2017) and Villacorta (2017).

Our analyses are similar to those of other studies 
performed in different regions of tropical forest, which 
indicated that environments with greater hydro-edaphic 
restrictions tend to have lower species richness (Jones et al., 
2008; J. Silva et al., 2010; Mosquera & Hurtado, 2014). For 
instance, in an ecotone area between Brazilian Amazonia and 

‘Cerrado’ (savanna), Elias et al. (2019) also reported that tree 
species richness is related to topography, indicating that hydric 
restrictions function as a filter to species in environments of 
sandy soils. Likewise, Lozada et al. (2012) indicated that 
environments with poorly drained soils in eastern Venezuela 
can generate restrictive hydric conditions which reduce 
local species richness and contribute to the formation of 
monodominance. This observation is similar to that found 
in our study area, where environments with greater hydro-
edaphic restrictions featured higher abundance of P. gracilipes, 
which often achieved monodominance (sensu Connell & 
Lowman, 1989).

In this context, we suggest that monodominant 
aggregations of P. gracilipes individuals in eastern Maracá Island 
tend to exclude other tree species through competitive 
interactions (e.g. tolerance to seasonal anoxia), optimizing 
its growth and survival in environments with greater hydro-
edaphic restrictions. As P. gracilipes is a slow-growing species 
(Carvalho, 2014), it could have greater fitness under these 
conditions by being able to accumulate biomass under low 

Figure 3. Relationship between species richness and (A) average altitude and (B) abundance of Peltogyne gracilipes in an ecotonal landscape 
in Northern Brazilian Amazonia. Each point represents one sampling plot (n = 129). Lines represent regression fits.
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soil nutrient levels (e.g. low sum of bases) which tend 
to exclude most tree species also occurring in this area. 
A plausible explanation is that fitness differences among 
species can negatively impact species richness because 
abundant soil nutrients are not necessarily available 
equally to all plants, as pointed by Chesson (2000). 
Therefore, the forests of eastern Maracá indicate to be 
an example of how species richness can vary significantly 
in environments with small differences in soil nutrient 
contents, and where the flooding seasonality seems 
to be the determining factor for a species (P. gracilipes) 
can achieve dominance of the environment through 
competitive exclusion.

EFFECT OF ENVIRONMENTAL VARIABLES AND 
ABUNDANCE OF P. GRACILIPES ON SPECIES 
COMPOSITION 
Tree species composition in eastern Maracá Island was 
related to the same predictors of species richness, varying 
as a function of the risk of seasonal flooding. These findings 
indicate that bottomlands with lower Clay content favour 
the survival of specialist species (P. gracilipes), contrary to 
uplands, where species composition is more diversified, 
as also observed by Nascimento and Proctor (1997) and 
W. Silva et al. (2019b).

In western Amazonia, the effect of topography on tree 
species composition was explained by Valencia et al. (2004) 
and Moser et al. (2014), who concluded that the topographic 
gradient imposes a restriction on species composition, even 
though most species are generalist relative to topographic 
variation. In Central Amazonia, Kinupp and Magnusson 
(2005) described that topography and a suite of variables 
(e.g. soil texture, water table depth and frequency of floods) 
restrict certain species to lower altitudes, although most 
species occurred both in bottomlands and uplands, even 
when species groups were analyzed separately. Similarly, 
Toledo et al. (2017) analyzed the effect of ecological 
characteristics separately and concluded that soil Clay 
content was responsible for 50% of the variation in species 
composition along the altitude gradient in Reserve Ducke, 
Central Amazonia. This observation is analogous to that by 
Damasco et al. (2013), who showed that soil Clay content 
was one of the most important predictors of tree species 
diversity in an ecotone area between ombrophilous forest 
and ‘campinarana’ open forest in the Viruá National Park, 
Northern Amazonia. Our study indicated that the altitude 
(a topographic proxy for risk of seasonal flooding) can be 
seen as an important predictor for determining the species 
composition in the ecotone forests of eastern Maracá, because 
it has a synergistic effect with both fertility and soil texture, 

Figure 4. Relationship between species composition and (A) average altitude, (B) clay content and (C) abundance of Peltogyne gracilipes in 
an ecotonal landscape in Northern Brazilian Amazonia. Each point represents one sampling plot (n = 129). Lines represent regression fits.
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especially Clay content (Appendix 1). Different types of 
environments characterized by seasonal flooding are seen as 
important factors that support distinctions in the tree species 
composition in the Amazon (Assis et al., 2015; Alemán et 
al., 2019). However, the seasonal flooding should not be 
seen as a single environmental filter predicting tree species 
composition in Maracá.

Studies on different tropical forests (Peh et al., 2011a, 
2011b; Marimon-Junior et al., 2019) have suggested that the 
clustering of specialist species is not conditioned by a single 
factor, but rather by a suite of environmental filters of different 
types (chemical, physical and biological) which favour species 
dominance. For instance, Marimon et al. (2001a, 2001b) 
showed that higher Mg:Ca ratio and higher micronutrients 
(Fe+2 and Mn+2) contents in the soil were responsible 
for the dominance by Brosimum rubescens (Moraceae), a 
tree species which prevails in environments considered 
unfavourable to other species due to chemical toxicity. An 
effect of Fe+2 was also observed by Lozada et al. (2012) in 
forests of eastern Venezuela which are dominated by Mora 
excelsa (Leguminosae). Iron (Fe+2) is a micronutrient of high 
content in the seasonally flooded soils of Maracá in which 
it could reach toxic levels to some tree species, but does 
not indicate any negative effect on P. gracilipes (Villacorta, 
2017). In this light, our results in Maracá suggest that species 
composition is a complex synergism between hydro-edaphic 
restrictions, and distinctive abundances of P. gracilipes, where 
sites at lower altitudes, poorly drained and clay-poor soils 
have as characteristic species composition dominated by P. 
gracilipes (monodominance). Therefore, altitude assumes 
the role of driver of species composition modulate 
by different abundances of P. gracilipes, considering its 
synergistic role in the allocation of nutrients, soil texture 
and hydraulic conditions (seasonal flooding) in ecotone 
forests in eastern of Maracá Island.

CONCLUSION
Tree species richness and composition in ecotone forests 
in eastern of Maracá Island, Northern Brazilian Amazonia, 

respond primarily to the same environmental filters, i.e. 
altitude (topographic proxy for indicate risk of seasonal 
flooding) associated with texture (Clay content) and soil 
fertility (micronutrients and sum of bases). These finds 
indicate that hydro-edaphic restrictions are the drivers 
of environmental heterogeneity in the studied ecotone 
forests, with direct and indirect effects through the different 
abundances of P. gracilipes. Our results support the hypothesis 
that both abiotic filters (e.g. poorly drained soils) and biotic 
interactions (e.g. monodominant stands of P. gracilipes) 
shape the studied tree communities. Peltogyne gracilipes 
can be considered an indicator species of hydro-edaphic 
conditions, but also is itself a driver of tree community 
structure, distinguishing forest types where it occurs under 
lower (positive effect on species richness and composition) 
or higher (negative effect) abundance.
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Appendix 1. Correlation matrix of environmental variables used as predictors in regression models of tree community structure. Numbers 
in bold indicate statistically significant correlations (P < 0.05).

Environmental variables Altitude Clay Base sum P Organic matter

Clay -0.06 - - - -

Base sum -0.15 0.23 - - -

P -0.19 0.00 -0.05 - -

Organic matter -0.43 0.51 0.40 0.15 -

Micronutrients -0.33 0.39 0.06 0.07 0.52



Environmental filters and biotic interactions drive species richness and composition in ecotone forests of the northern Brazilian Amazonia

244

Appendix 2. Residual spatial correlograms of regression models. The curve represents the estimated spatial correlation with varying 
distance between plots. The horizontal line indicates the null correlation (zero), and the grey bands indicate the 95% confidence interval. 
As confidence bands include the null correlation across distances, there is no evidence for significant residual spatial correlation.
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