⁴⁰Ar/³⁹Ar age, lithogeochemistry and petrographic studies of the Cretaceous Alkaline Marapicu Intrusion, Rio de Janeiro, Brazil

Idade ⁴⁰Ar/³⁹Ar, litogeoquímica e estudos petrográficos da Intrusão Alcalina Cretácea do Marapicu, Rio de Janeiro, Brasil

Daniel Adelino da Silva^I, Mauro Cesar Geraldes^I, Thais Vargas^I, Fred Jourdan^{II}, Camila Cardoso Nogueira^I ^IUniversidade do Estado do Rio de Janeiro. Rio de Janeiro, Rio de Janeiro, Brasil ^{II}Western Australian Argon Isotope Facility. Perth, Austrália

Abstract: The Marapicu Alkaline Massif is an intrusion into the Marapicu-Gericinó-Mendanha Igneous Complex that is part of the Cretaceous Poços de Caldas-Cabo Frio magmatic lineament located in the Southeastern region of Brazil. Nepheline syenites and phonolites are the most abundant rocks in the massif that also include syenites forming an alkaline series SiO_2 -undersatured. Chemically this series is predominantly metaluminous and to a lesser extent peralkaline. This series presents both potassic and sodic suites being the first one in greater content. The data show that both basic and intermediary rocks with parental composition sampled in this area have no genetic relationship with the other rocks of the body. Geochemistry data shows that evolution processes involved fractional crystallization with or without continental crust assimilation and also indicates that this alkaline magma was generating from an enriched mantle source. The ⁴⁰Ar/³⁹Ar age of hornblende (extracted of nepheline syenite) from Marapicu massif is 80.46 \pm 0.58 Ma, which it is contrasting, with the idea of age decrease of the hotspot track from west to east on the Poços de Caldas-Cabo Frio magmatic lineament.

Keywords: Alkaline rocks. Marapicu Alkaline Massif. Geochemistry. ⁴⁰Ar/³⁹Ar age.

Resumo: O Maciço Alcalino do Marapicu é uma intrusão do complexo ígneo Marapicu-Gericinó-Mendanha que faz parte do lineamento magmático Poços de Caldas-Cabo Frio, localizado na região sudeste do Brasil. Nefelina sienitos e fonolitos são as rochas mais abundantes nesse maciço, que também inclui sienitos, formando uma série insaturada em sílica. Quimicamente, esta série é predominantemente metaluminosa e, em menor grau, peralkalina. Ela possui uma suíte potássica (predominante) e outra sódica. Os dados mostram que as amostras de composição básica coletadas não possuem relação genética com as demais. Dados geoquímicos indicam um processo de evolução envolvendo cristalização fracionada com ou sem assimilação de crosta continental, além disso indicam que esse magma foi gerado em fonte mantélica enriquecida. A idade ⁴⁰Ar/³⁹Ar em hornblenda (extraída de nefelina sienito) do Marapicu é de 80,46 ± 0,58 Ma, contrastando com a ideia de decréscimo de idade do traço do *hot spot* de oeste para leste no lineamento Poços de Caldas-Cabo Frio.

Palavras-chave: Rochas alcalinas. Maciço alcalino do Marapicu. Geoquímica. Idade ⁴⁰Ar/³⁹Ar.

Aprovado em 07/04/2016

Responsabilidade editorial: Mário Augusto G. Jardim

SILVA, D. A., M. C. GERALDES, T. VARGAS, F. JOURDAN & C. C. NOGUEIRA, 2016. ⁴⁰Ar/³⁹Ar age, lithogeochemistry and petrographic studies of the Cretaceous Alkaline Marapicu Intrusion, Rio de Janeiro, Brazil. **Boletim do Museu Paraense Emílio Goeldi. Ciências** Naturais 10(3): 399-422.

Autor de correspondência: Daniel Adelino da Silva. Universidade do Estado do Rio de Janeiro. Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis. Rua São Francisco Xavier, 524 – Maracanã. Rio de Janeiro, RJ, Brasil. CEP 20550-990 (adelinogeologia@yaoo.com.br). Recebido em 28/04/2015

INTRODUCTION

The Marapicu-Gericinó-Mendanha Igneous Complex (Figure 1) is composed of two adjacent alkaline intrusions named as Marapicu and Mendanha; these bodies are intruded into the Central segment of the Neoproterozoic Ribeira Mobile Belt and make part of the Brazilian Southeast Alkaline Province (Almeida, 1983). The Marapicu-Gericinó-Mendanha Igneous Complex is detached related to other alkaline provinces of the South America Platform for including plutonic, sub-volcanic (mainly dykes) and volcanic (rarely seen in that provinces) rocks (Ulbrich & Gomes, 1981). The Marapicu Massif forms a smaller body with approximately circular shape having close to 10 km² in area and height over 400 m. The Gericinó-Mendanha is the biggest body localized east side of the Marapicu and has approximately shape the ellipse. Its higher accessible point is over than 850 m. In this body is localized the Nova Iguaçu Volcanic Complex which is composed for central agglomerate, bombs, tuffs and abundant lapilli (Klein & Vieira, 1980; Klein, 1993). In this study, we carry out new petrographical observations and, geochemical and ⁴⁰Ar/³⁹Ar analyses of samples from the Marapicu Massif. The aim of this study is to constrain the emplacement models of the Cretaceous-Tertiary magmatism, which have taken place in the South-American Plate, southern from Brazil.

Figure 1. Geologic map of Marapicu massif (smaller body in the left) and Gericinó-Mendanha massif (bigger body in the right) adapted of Mota (2008).

TECTONIC SETTING

Alkaline rocks occurrence in the southeast part of Brazil are observed in two great magmatic lineaments of Cretaceous-Tertiary age in the South-American Platform. The first presents a NW-SE direction and is called Poços de Caldas-Cabo Frio Lineament (Figure 2) and the second which have a NW-SW direction is called Southern Coast (Ulbrich & Gomes, 1981). These two lineaments make part of the Alkaline Province of Brazilian Southern (Almeida, 1986).

The magmatism dated from Mesozoic to Cenozoic periods is widely registered on the Brazilian territory as tholeitic lava flows, dykes, alkaline plugs and stocks (Almeida, 1976, 1986; Almeida *et al.*, 1996; Thomaz Filho & Rodrigues, 1999; Thomaz Filho *et al.*, 2005).

Figure 2. Poços de Caldas-Cabo Frio magmatic lineament.

These magmatic manifestations are associated with two great events, which occurred in the South-American Platform, stabilized in the Cambrian-Ordovician and, can be sub-divided in the tholeitic magmatism that is associated to Gondwana break-up and consequently opening of South Atlantic Ocean. These magmatic events occurred approximately 130 to 120 Myr ago and are associated with the implantation of a Brazilian passive margin basin. The other event is the alkaline magmatism related to uplift phenomena such as the occurred in the Serra do Mar and sedimentary tertiary basin of Brazilian southern formation.

The alkaline rock bodies' lineament Poços de Caldas-Cabo Frio (Almeida, 1983, 1986, 1991; Almeida *et al.*, 1996; Freitas, 1947) form a located magmatic sequence represented by alkaline rocks in the form of stocks, plugs, dykes and rare lavas and pyroclastic flows. These rocks present ages between Upper Cretaceous to Eocene and setting in WNW-ESE direction into the Rio de Janeiro state, cutting by oblique way the preferential direction of tectonic structures from the Neoproterozoic Ribeira Mobile Belt. Almeida (1991) refers to that alkaline rocks being exclusively felsics and presented mainly for nepheline syenite, pulaskite, foiaite, phonolite, tinguaite and trachyte.

GEODYNAMIC MODELS

Three geodynamic models have been proposed for explaining the Upper Cretaceous alkaline magmatism in the meridional part of South-American Plate (Almeida, 1991; Fainstein & Summerhayes, 1982; Thomaz Filho *et al.*, 2000; Thompson *et al.*, 1998) as following: reactivation of deep faults; hotspot activity and; the combination of two previous models.

The reactivation of deep faults proposal is directly related to the sub-parallelism of both continental and oceanic lineaments observed in the Atlantic passive margin of the South-American Plate (for instance: Gorini & Bryan, 1976).

The plumes and hotspots related magmatism model (for instance: Gibson *et al.*, 1995) suggest that the alkaline activity of Upper Cretaceous in the southern of Brasil may have been caused for the Trindade-Martin Vaz mantle plume at the base of continental lithosphere.

The third model attempted to associate the fault reactivation by the presence of a thermic anomaly (plume) in the Upper Cretaceous of the Brazilian southeast region (Fainstein & Summerhayes, 1982; Thomaz Filho *et al.*, 2000). This model explains the magmatic activity related to the Poços de Caldas-Cabo Frio lineament as a response for the thermic anomaly also responsible for the formation of the Vitoria-Trindade magmatic lineament.

MATERIALS AND METHODS

FIELD WORK

The methodology applied in this study starting with fieldwork when 28 outcrops were visited at the parts Southwest, North and Northeast of the area and 52 samples were collected. The greater part of the sampling includes nepheline syenites and phonolites, which are the most representatives in the area. Furthermore, we have collected one basanite/tefrite and one tefrite phonolitic. The nepheline syenites and syenites presents granulometry ranging from fine to coarse including pegmatitic types. The plutonic rocks occur intruded into the granites and gneiss of the Domínio Costeiro from the Ribeira Mobile Belt, the phonolites occur as hipoabissal bodies the way of the dikes with up to 3 m width. These dikes have two main trends: NW-SE e NNE-SSW.

⁴⁰Ar/³⁹Ar METHODOLOGY

We selected a fresh sample from Marapicu for ⁴⁰Ar/³⁹Ar dating and separated unaltered, optically transparent, 250-500 μ m size, hornblende. These minerals were separated using a Frantz magnetic separator, and then carefully hand-picked under a binocular microscope. The selected hornblende minerals were further leached in diluted HF for one minute and then thoroughly rinsed with distilled water in an ultrasonic cleaner. This step was carried out at the Geologic Laboratory of Sample Preparation from State University of Rio de Janeiro.

▶ I E\$∃ I •

After the hornblende grain separation the ⁴⁰Ar/³⁹Ar dating was carried out at the Curtin University from Australia where the Samples were loaded into a large wells of 1.9 cm diameter and 0.3 cm depth aluminum disc. This well was bracketed by small wells that included Fish Canyon sanidine (FCs) used as a neutron fluence monitor for which an age of 28.294 \pm 0.036 Ma (1 σ) was adopted of Renne et al. (2011). The discs were Cd-shielded (to minimize undesirable nuclear interference reactions) and irradiated for 2 hours in the Hamilton McMaster University nuclear reactor (Canada) in position 5C. The mean J-values computed from standard grains within the small pits and determined as the average and standard deviation of |-values of the small wells for each irradiation disc is given along with the raw data in Table 1. Mass discrimination is given in Table 2 for each sample and was monitored using an automated air pipette and calculated relative to an air ratio of 298.56 \pm 0.31 (Lee *et al.*, 2006). The correction factors for interfering isotopes were $\binom{39}{4}$ Ar/ 37 Ar)_{Ca} = 7.30x10-4 (± 11%), $\binom{36}{4}$ Ar/ 37 Ar)_{Ca} = 2.82x10-4 (\pm 1%) and (⁴⁰Ar/³⁹Ar)_k = 6.76x10-4 (\pm 32).

Iddle I. Fledit - Values	Table	. Mean	I-values.
--------------------------	-------	--------	-----------

The ⁴⁰Ar/³⁹Ar analyses were performed at the Western Australian Argon Isotope Facility at Curtin University. The sample was step-heated in a double vacuum high frequency Pond Engineering© furnace. The gas was purified in a stainless steel extraction line using two AP10 and one GP50 SAES getters and a liquid nitrogen condensation trap. Ar isotopes were measured in static mode using a MAP 215-50 mass spectrometer (resolution of ~400; sensitivity of 4 x 10⁻¹⁴ mol/V) with a Balzers SEV 217 electron multiplier using 9 to 10 cycles of peak-hopping.

The data acquisition was performed with the Argus program written by M.O. McWilliams and ran under a LabView environment. The raw data were processed using the ArArCALC software (Koppers, 2002) and the ages have been calculated using the decay constants recommended by Renne *et al.* (2011). Blanks were monitored every 3 to 4 steps and typical ⁴⁰Ar blanks range from 1×10^{-16} to 2×10^{-16} mol. Ar isotopic data corrected for blank, mass discrimination and radioactive decay are given in Table 3. Individual errors in Table 3 are given at the 1 σ level.

Sample	Material	Location	Temp	Standard age (in Ma)	%10	_	%ام	MDF	%ام	Volume ratio	Sensibility (mol/vol)	Irradiation	Standard name
MPC-11	Hbl	Furnace	600 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	700 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	800 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	900 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	1000 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	1025 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	1050 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	1075 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	1100 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	1125 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	1150 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	l7t25h	FCs
MPC-11	Hbl	Furnace	1175 °C	28,305	0,13	0,009182	0,29	1,000554	0,32	1	4,020E-14	I7t25h	FCs

40Ar(k)	610000'0	SE0000'0	190000'0	80+000'0	804100,0	r20000,0	£90000'0	∠0≁000'0	282000'0	SE0000'0	800000'0	800000'0
40Ar(c)	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0
40Ar(a)	859910'0	656260'0	£ 1 +020,0	0+8280,0	672221'0	028110,0	0'014836	018440,0	555510'0	698∠00'0	207510,0	616210'0
40Ar(r)	++SSE1,0	۲8973 <u>,</u> 0	622124'0	557696,2	608122,01	S9107E,0	090∠5+'0	912296'7	986550'7	7 48952,0	8096+0'0	948840'0
39Ar(ca)	∠00000'0	910000'0	9£0000'0	868000'0	821400,0	٢٤٢٥٥٥,0	0,000201	₽ 2£100'0	651100'0	٢٢١٥٥٥,0	0'000035	0£0000'0
39Ar(k)	£9 7 720'0	0'025353	6,090133	٤८६६०९'٥	5'085536	996520'0	682860'0	671209'0	0,416832	0'025524	847110,0	924110'0
38Ar(cl)	680000'0	881000,0	0,000280	014400,0	090120,0	689000'0	≯ 66000'0	206500,0	٤८८٤٥٥'٥	I∕S000'0	920000'0	0£1000,0
38Ar(ca)	000000'0	000000'0	100000,0	820000'0	621000,0	\$00000'0	900000'0	2+0000'0	9£0000'0	900000'0	100000,0	100000,0
38Ar(k)	145000,0	6 7 9000'0	811100,0	68 ≯ ∠00'0	078520'0	246000,0	791100'0	997200'0	691200'0	8+9000'0	9+1000,0	241000,0
38Ar(c)	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0
38Ar(a)	110000,0	Z90000'0	0,000032	≯ \$0000'0	≯ 80000'0	∠00000'0	600000'0	820000,0	010000,0	\$00000'0	600000'0	110000,0
37Ar(ca)	610600'0	284120,0	847640,0	۱'556666	294459'S	SO2412'0	652527'0	1'824533	٤٤٤882'۱	205242,0	0'0+3325	079140,0
36Ar(cl)	000000'0	000000'0	000000'0	100000,0	900000'0	000000'0	000000'0	0,000002	100000,0	000000'0	000000'0	000000'0
36Ar(ca)	٥٬٥٥٥٥٥٤	900000'0	≯ 10000,0	∠≯ɛ000'0	S6S100,0	090000'0	820000'0	6,000523	844000,0	890000'0	0,000012	0,000012
36Ar(c)	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0	000000'0
36Ar(a)	950000'0	0'000335	I71000,0	062000'0	∠₽₽000'0	0+0000,0	050000'0	221000,0	220000'0	∠70000'0	9+0000'0	190000'0
Temp	600 °C	700 °C	2°008	2°009	1000 °C	1025 °C	1050 °C	1075 °C	1100 °C	1125 °C	1150 °C	1175 °C

Table 3. Ar isotopic data corrected for blank, mass discrimination and radioactive decay.

Temp.	40(r)/ 39(k)	1σ	40(r+a)	1σ	40Ar/ 39Ar	1σ	37Ar/ 39Ar	1σ	36Ar/ 39Ar	1σ	37Ar (decay)	39Ar (decay)	40Ar (moles)
600 °C	4,935491	0,18010	0,15220	0,00132	5,54120	0,05637	0,32832	0,04230	0,00214	0,00058	27,99711685	1,00119105	6,119E-15
700 °C	5,116062	0,11540	0,36565	0,00133	6,98685	0,03861	0,41045	0,02129	0,00645	0,00037	28,01709338	1,00119130	1,470E-14
800 ℃	5,006840	0,05874	0,50172	0,00142	5,56493	0,02630	0,55172	0,02390	0,00205	0,00018	28,03708417	1,00119156	2,017E-14
900 °C	4,917031	0,02349	3,05559	0,00242	5,05232	0,01733	2,03349	0,07059	0,00106	0,00005	28,05670437	1,00119181	1,229E-13
1000 °C	4,909047	0,01985	10,35404	0,00881	4,96339	0,01732	2,71020	0,09362	0,00098	0,00002	28,07441280	1,00119203	4,163E-13
1025 °C	4,872760	0,08593	0,38198	0,00134	5,01869	0,02892	2,81788	0,10224	0,00132	0,00027	28,09444449	1,00119229	1,536E-14
1050 °C	4,875871	0,05313	0,47190	0,00130	5,02406	0,02434	2,93547	0,10679	0,00137	0,00016	28,11410483	1,00119254	1,897E-14
1075 °C	4,925050	0,02119	3,01033	0,00202	4,98893	0,01659	3,07255	0,10638	0,00112	0,00003	28,13377894	1,00119279	1,210E-13
1100 °C	4,932413	0,02733	2,07134	0,00176	4,95614	0,01793	3,79984	0,13165	0,00120	0,00006	28,15346681	1,00119304	8,328E-14
1125 °C	4,915601	0,11410	0,26471	0,00132	5,04978	0,03411	4,62545	0,16329	0,00182	0,00036	28,17316846	1,00119329	1,064E-14
1150 °C	4,222606	0,50306	0,06331	0,00125	5,37514	0,11364	3,68020	0,16580	0,00498	0,00166	28,19211048	1,00119353	2,545E-15
1175 °C	4,212596	0,38884	0,06626	0,00105	5,75936	0,10206	3,61702	0,16169	0,00629	0,00127	28,21183917	1,00119378	2,664E-15

Our criteria for the determination of plateau are as follows: plateaus must include at least 70% of ³⁹Ar. The plateau should be distributed over a minimum of 3 consecutive steps agreeing at 95% confidence level and satisfying a probability of fit (P) of at least 0.05. Plateau ages are given at the 2σ level and are calculated using the mean of the entire plateau steps, each weighted by the inverse variance of their individual analytical error. Inverse isochrons include the maximum number of steps with a probability of fit \geq 0.05. The ⁴⁰Ar/³⁶Ar intercept value is provided. All sources of uncertainties are included in the calculation.

PETROGRAPHY

Nepheline syenite and syenite

The plutonic lithotypes include nepheline syenites and syenites showing very similar petrographic and hand sample characteristics, they presents holocrystalline and equigranular texture and grain size ranging from coarse (3 to 6 mm) to fine (\pm 1 m) (Figures 3A, 3B and 3C). Its main mineralogy include: alkali feldspar, nepheline, plagioclase

and hornblende. The accessory minerals include: biotite, scapolite, muscovite, carbonate, zircon, apatite, augite and opaque mineral (mainly magnetite). Fine-grained white clay mineral is common in all samples, formed by the decomposition of alkali feldspar.

The alkali feldspar grains with simple Carlsbad twins and plagioclase both occur in different shapes anhedral, subhedral and tabular euhedral, they have coarse (3 to 6 mm) to medium sizes (1 to 3 mm). Abundant alkali feldspar grains are microperthitic (Figures 3D and 3F) and show transformation into very fine ragged grains of sericite and ultrafine – grained clay with a cloudy appearance, a radial texture is present too (Figure 3D). The plagioclase with K-feldspar lamellae also shows an alteration grade, which occults almost totally its polysynthetic twinning. The nepheline occurs, in smaller proportion related to feldspars, with anhedric and subhedric coarse crystals and takes place in interstitial spaces.

The hornblende grains are strongly pleochroic from greenish-brown to dark brown, occur in anhedral, subhedral and euhedral shapes forming hexagonal grains. Some zoned

Figure 3. Characteristics of the facies syenitic: A, B and C) macroscopic aspect of the handle sample; D, E and F) photomicrographs in cross-polarized light. Legends: Af = alkali feldspar; hbl = hornblende.

grains present a variation of green colour being more dark in the rim and more light in the core, besides the simple twinning visible (Figure 3E). Other aspect is that the hornblende presents inclusions of apatite and biotite (more often), but opaque minerals, scapolite and carbonate are also observed. In their rim occur grains of biotite and opaque minerals, muscovite sometimes as alteration product is present too.

The biotite is observed forming anhedral and subhedral grains or as rips. It appears as inclusion in hornblende or in contact with their rims. The apatite is sub-milimetric, also disseminated and occurs commonly included in hornblende, as anhedral and euhedral grains with hexagonal or neddle habits. The scapolite occurs frequently as xenomorphic crystals but few present triangular habits. Carbonate, muscovite, augite and opaque mineral are found in subordinated amount. Opaque minerals are mainly magnetite forming few grains with anhedral habit. Zircon is rare and generally occurs < 1 mm in size.

Phonolites

The phonolites can be divided in two groups based on their phenocrysts content. The first group of phonolite is represented by a fine-grained, inequigranular porphyritic rock (Figure 4A) with phenocrysts of alkali-feldspar, nepheline and hornblende that comprise $\sim 10\%$ by volume of the rock (Figure 4C) in a hypocrystalline matrix.

Figure 4. Characteristics of the two phonolite groups, (A) macroscopic aspect of the phonolite of first group, (B) macroscopic aspect of phonolite of second type, (C) photomicrograph them with a strong trachytic texture in cross-polarized light, and (D) photomicrograph them, in cross-polarized light. Legends: Ne = nepheline; Sn = sanidine; Af = alkali feldspar; hbl = hornblende; Mtx = matrix.

The groundmass of the rock has a grain size < 1 mm. It exhibits a strong trachytic texture, and is dominated by sanidine, hornblende and biotite. The alkali feldspar phenocrysts show Carlsbad twinning and large size (3 to 5 mm), are anhedral and subhedral with tabular habit. The nepheline phenocrysts are subhedral and euhedral with hexagonal habit occurring as medium sized crystals (2 to 3 mm). Hornblende phenocrysts are anhedral and euhedral and up 3 mm with hexagonal, octagonal and tabular habits. Some grains present compositional zoning and carlsbad twinning. Isotropic glass and opaques occur within interstitial areas.

The second type of phonolite (Figure 4B) is a rock inequigranular porphyritic with a fine-grained matrix and phenocrystals of sanidine and nepheline, which have a medium size (about 3 mm), also occur a few millimetric phenocrysts of biotite. The accessory minerals are biotite, scapolite, augite, opaque minerals and zircon. The sanidine integrates the matrix forming submilimetric crystals commonly subhedral and euhedral. It is common their presence as euhedral phenocrysts with tabular habit and carlsbad twinning. Many sanidine grains are elongate laths (Figure 3D). The nepheline occurs as subhedral and euhedral phenocrystals, with hexagonal habit. Microscopic examination reveals the trachytic texture of the fine matrix.

Whole rock Geochemistry

A subset of 27 samples was prepared for whole rock geochemical analyses at the Geologic Laboratory of Sample Preparation from State University of Rio de Janeiro. The hand sample were cut the way of chip being two pieces for each sample and them these chips were fragmented in a pestle. The fragments were washed with distilled water and alcohol so left to dry. These fragments were powdered in a tungsten ball mill; this machine is also a mixer ensuring the homogeneity of the sample. The rock powder for each sample is stored in 10 g container and then send to geochemical analyses.

All geochemical analyses were performed in the Activation Laboratories Ltd. from Canada by using

relatively fresh samples. Whole rock major and trace element concentrations were measured using Fusion Mass Spectrometry (FUS-MS) and Fusion Inductively Coupled Plasma (FUS-ICP) techniques. The sum of the major elements and Loss on Ignition is between 98.19 and 100.55 wt%. The Loss on Ignition values are less than 5%. The iron analyses were carried out in the way of total Fe_2O_3 as indicated in Appendix.

The Marapicu massif is constituted of an alkaline series, which have mainly nepheline syenites and phonolites as it is shown in the Figure 5. This series it is characterized for increasing of the alkalis ($Na_2O + K_2O$) content along with decreasing of the SiO₂ content, in this way, geochemically the more evaluated members of the series are the phonolites and the less evaluated members are the syenites.

The samples analyzed form an alkaline series with intermediary character and SiO₂ content ranging of 53.46 wt% to 61.87 wt%. Into the TAS diagram (SiO₂ versus Na_2O+K_2O) of Cox et al. (1979), the most part of the samples lie in the nepheline syenite field, and a smaller group lie in the syenite field. The sample MAR-28C have a basic composition with SiO₂ content of 47.5 wt% and high content of Fe₂O₃T (8.24 wt%), MgO (7.02 wt%) and CaO (8.51 wt%) which are mafic rock-forming mineral elements, besides, presents both high content of Ni (130 ppm) and Cr (370 ppm). This way the sample cited would be representative the parental magma of the alkaline serie in study but as will be showed there is no genetic relationship with the other samples. The sample MAR-24 also have a mafic composition with high content of Fe₂O₃T (9.01 wt%), MgO (2.5 wt%) and CaO (5.66) and have not genetic relationship with the other samples too.

The A/CNK versus A/NK (Al/2Ca+Na+K versus Al/ Na+K molar prop.) by Shand (1943) (Figure 6) was used to discriminate the alumina saturation classes. According to this diagram the most part of the samples (all of the plutonic nepheline syenites and syenites in addition to part of the phonolites) are metaluminous (Al₂O₃/ Na₂O+K₂O > 1), which indicate that had excess of Ca

Figure 5. Total alkalis *versus* silica chemistry classification diagram by Cox *et al.* (1979) for all Marapicu samples analized. Triangle represents plutonic nepheline syenites and syenites, filled squares represents phonolites, open square and asterisk represents basic rocks.

after the alumina cumulate on feldspar, this is agreed with mineral assemblage formed for hornblende and biotite observed in the petrography. A lesser part of the samples (phonolites not included in the metaluminous group) are peralkalines (Al₂O₂/Na₂O+K₂O < 1), and indicating an excess of alkalis related to alumina and more alkalis that the necessary to make feldspars, as agreed with hornblende present in the mode. Furthermore the sample MAR-19A (nepheline syenite) presents peraluminous character (Al/(2Ca+Na+K)) indicating more alumina than necessary to make feldspar and corroborated by normative corundum (Table 4). The CIPW norm applied these samples show that it is a SiO₂-undersatured series including a normative assemblage of $Or + Ab \pm An + Ne \pm Di \pm Ol$ (Table 4). This way, metaluminous plutonic nepheline syenites and syenites are anorthite and diopside normatives. On the other hand, peralkaline volcanic phonolite presents sodium metasilicate (Ns) and lack of anorthite in the norm.

Figure 6. Aluminosity diagram by Shand (1943) showing predominant metaluminous samples. Triangle represents plutonic nepheline syenites and syenites, filled squares represents phonolites.

Table 4. CIPW (Cross, Iddings, Pirrson and Washington - the creators of the norm calculation) norm of the 27 analyzed samples from Marapicu massif. The normative minerals keys are: Q = quartz, C = corundum, Or = orthoclase, Ab = albite, An = anortite, Ne = nepheline, Ns = nosean, Di = diopside, Wo = wolastonite, Hy = hyperstene, Ol = olivine, Il = ilmenite, Tn = titanite, Pf = plagioclase, Ru = rutile, Ap = apatite. (Continue)

Analyte symbol	Classification	Q	С	Or	Ab	An	Ne	Ns	Di	Wo	Ну	Ol	Il	Tn	Pf	Ru	Ар	Sum
MAR- 28C	Basanite/ tephrite	0.000	0.000	20.034	16.421	10.557	13.428	0.000	18.658	0.000	0.000	6.192	0.336	0.000	2.323	0.000	1.066	89.015
MAR-24	Phonolitic tephrite	0.000	0.000	29.726	30.538	7.857	7.018	0.000	9.326	0.000	0.000	1.334	0.586	0.000	2.017	0.000	1.492	89.894
MAR- 06A	Phonolite	0.000	0.000	36.226	39.133	4.792	8.917	0.000	1.881	0.200	0.000	0.000	0.319	0.000	0.426	0.000	0.261	92.155
MAR-07	Phonolite	0.000	0.000	37.172	37.442	4.495	11.438	0.000	1.934	0.167	0.000	0.000	0.332	0.000	0.464	0.000	0.308	93.751
MAR- 22B	Phonolite	0.000	0.000	34.808	44.296	3.295	6.395	0.000	2.418	0.499	0.000	0.000	0.509	0.000	0.353	0.000	0.474	93.047
MAR- 19B	Phonolite	0.000	0.000	35.104	40.018	2.342	11.234	0.000	0.913	1.232	0.000	0.000	0.362	0.000	0.115	0.000	0.142	91.462
MAR- 05A	Phonolite	0.000	0.000	35.340	37.456	1.683	13.676	0.000	1.113	1.257	0.000	0.000	0.325	0.000	0.000	0.000	0.166	91.016
MAR- 04C	Phonolite	0.000	0.000	36.167	36.654	0.532	14.752	0.000	1.134	1.787	0.000	0.000	0.334	0.000	0.000	0.000	0.166	91.526
MAR-18	Phonolite	0.000	0.000	34.217	33.241	0.000	22.710	0.389	0.573	1.872	0.000	0.000	0.139	0.000	0.000	0.000	0.024	93.164
MAR- 22C	Phonolite	0.000	0.000	33.390	36.109	0.000	19.962	0.744	0.806	1.368	0.000	0.000	0.287	0.000	0.191	0.000	0.166	93.022
MAR- 28B	Phonolite	0.000	0.000	31.144	41.579	0.000	15.916	0.973	1.451	1.300	0.000	0.000	0.406	0.000	0.286	0.000	0.213	93.269
MAR- 09A	Phonolite	0.000	0.000	33.981	36.490	0.000	19.593	1.306	0.797	1.504	0.000	0.000	0.281	0.000	0.000	0.000	0.095	94.047
MAR- 02B	Phonolite	0.000	0.000	35.990	27.029	0.000	22.969	2.866	0.487	1.567	0.000	0.000	0.464	0.000	0.000	0.000	0.071	91.442

Bol. Mus. Para.	Emílio Goeldi.	Cienc. Nat	Belém. v. 1	0. n. 3. p.	399-422.	set-dez. 2015	

٦	2	hi		4	
1	а	$\boldsymbol{\upsilon}$	IC.	т.	

(Conclusion)

Analyte symbol	Classification	Q	С	Or	Ab	An	Ne	Ns	Di	Wo	Ну	Ol	Il	Tn	Pf	Ru	Ар	Sum
MAR-15	Phonolite	0.000	0.000	29.253	31.844	0.000	21.820	4.306	0.662	1.789	0.000	0.000	0.467	0.000	0.000	0.000	0.095	90.237
MAR-27	Nepheline syenite	0.000	0.000	31.794	45.921	6.482	1.848	0.000	1.846	0.000	0.000	0.954	0.477	0.000	0.625	0.000	0.805	90.752
MAR-03	Nepheline syenite	0.000	0.000	37.467	43.566	4.848	3.903	0.000	1.460	0.587	0.000	0.000	0.435	0.000	0.000	0.000	0.237	92.503
MAR- 10B	Nepheline syenite	0.000	0.000	32.740	38.082	3.760	19.342	0.000	0.444	0.000	0.000	0.025	0.154	0.000	0.000	0.000	0.095	94.642
MAR- 19A	Nepheline syenite	0.000	0.489	32.858	51.151	1.707	9.787	0.000	0.000	0.000	0.000	0.111	0.048	0.000	0.000	0.000	0.118	96.269
MAR- 01D	Nepheline syenite	0.000	0.000	35.931	43.341	2.874	11.451	0.000	0.605	0.930	0.000	0.000	0.139	0.000	0.000	0.000	0.047	95.317
MAR- 17B	Nepheline syenite	0.000	0.000	33.272	46.020	2.124	8.945	0.000	0.693	1.336	0.000	0.000	0.276	0.000	0.000	0.000	0.118	92.784
MAR-20	Syenite	0.000	0.000	35.104	47.280	5.328	1.799	0.000	1.451	0.306	0.000	0.000	0.366	0.000	0.149	0.000	0.308	92.090
MAR-26	Syenite	0.000	0.000	31.912	47.897	5.231	2.886	0.000	2.279	0.000	0.000	0.359	0.317	0.000	0.508	0.000	0.568	91.958
MAR- 06B	Syenite	0.000	0.000	37.881	47.627	5.271	3.262	0.000	0.302	0.000	0.000	0.199	0.205	0.000	0.172	0.000	0.213	95.131
MAR- 16C	Syenite	0.000	0.000	36.876	48.386	4.973	0.742	0.000	1.934	0.237	0.000	0.000	0.332	0.000	0.244	0.000	0.237	93.960
MAR- 01A	Syenite	0.000	0.000	37.113	48.721	4.087	1.706	0.000	1.236	0.621	0.000	0.000	0.274	0.000	0.189	0.000	0.213	94.159
MAR- 16A	Syenite	0.000	0.000	37.940	47.998	4.271	4.023	0.000	1.075	0.314	0.000	0.000	0.233	0.000	0.155	0.000	0.189	96.199
MAR- 13C	Syenite	0.000	0.000	36.758	45.927	4.060	4.320	0.000	1.558	0.461	0.000	0.000	0.302	0.000	0.244	0.000	0.261	93.891

Harker diagrams were confectioned for major elements K₂O, Na₂O, CaO, TiO₂, P₂O₅, Fe₂O₃(T), MgO, Al_2O_2 (Figure 7) and also for the following trace elements Y, Rb, U, Eu, Pb, Ba, Sr and Th (Figure 8). The Figure 7 shows that Al_2O_3 ($R^2 = 0.0744$), and TiO_2 (R² = 0.0811) content roughly decrease with SiO_2 increase, Fe_2O_3 presents the same behavior although with better linear correlation ($R^2 = 0.1818$). MgO ($R^2 = 0.0089$), CaO ($R^2 = 0.0323$) and P_2O_5 (R^2 = 0.0159) roughly increase along with SiO₂. In fact, the R² values (linear correlation) for these oxides indicate dispersion of the data. Still looking in Figure 7, Na₂O content decrease with SiO₂ increase ($R^2 = 0.4653$), whereas K_2O ($R^2 = 0.2509$) content increase along with SiO₂. This way, only both Na₂O and K₂O presents robust linear correlation. The Figure 8 shows that Rb $(R^2 = 0.5697), U (R^2 = 0.1604), Th (R^2 = 0.4104), Y$ $(R^2 = 0.6370)$ and Pb $(R^2 = 0.5426)$ content decrease with SiO₂ increase. All of these trace elements present robust data according to their R² values. On the other hand, Ba ($R^2 = 0.1842$), Sr ($R^2 = 0.1368$) and Eu (R^2 = 0.0542) content increase along with SiO₂ with poor linear correlation except for Ba.

Rare earth elements (REE) of the alkaline series were normalized to chondrite Boynton (1984) (Figure 9). This diagram showed that the REE pattern for the most part of the samples have in general a Eu negative anomaly, moreover, there is a bigger fractionating for the light REE (La, Ce, Pr, Nd, Pm, Sm) being more than one hundred times the condritic values related to heavy REE (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The samples MAR-28C and MAR-24 (basanite tephrite and phonolitic tephrite respectively) presents unexpectedly high REE content indicating lack of cogeneticity with the alkaline series studied. The high concentration of light REE suggests a source rich in these elements and the Eu negative anomaly suggest the fractionation of plagioclase in the least stages of the crystallization in addition to the fractionating of K-feldspar. The primitive

mantle normalized spidergram by Sun & McDonough (1989) of the Figure 10 shows that the comportment of the elements of the Marapicu magma relate to their possibly mantle source. This diagram show a general pattern to which occurs a progressive depletion of Ba, Sr, P, and Ti, on the other hand, the remaining of the more incompatible REE elements are enriched.

RESULTS AND DISCUSSION

The 40 Ar/ 39 Ar dating of the Marapicu intrusion has been carried out by using hornblende grain extracted of the nepheline syenite sample as above mentioned. The hornblende sample yielded a plateau age of 80.46 ± 0.58 Ma (MSWD = 1.08; P = 0.37) including 100% of the 39 Ar released (Figure 11) that we interpret as the cooling age of the hornblende, which should be temporally very close to indistinguishable from its crystallization age.

The K/Ca ratio (derived from the ³⁹Ar/³⁷Ar ratio) shows the presence of a K-rich component at the low-temperature steps (Figure 12), but show a relatively constant composition (~0.2) for the medium to high temperature steps, suggesting that the selected crystals were homogenous and did not contain any inclusions.

The data were plotted in an inverse isochron diagram (Figure 13) and gave an age of 80.27 ± 0.62 Ma statistically indistinguishable from the plateau age, and a ⁴⁰Ar/³⁶Ar ratio of 326 ± 36, indistinguishable from atmospheric composition. This suggest that no excess ⁴⁰Ar* is present in the sample.

The present data suggest that the Marapicu massif form an alkaline series mostly constituted of phonolites and nepheline syenites. This series has SiO_2 -undersatured character and it is observed SiO_2 decreasing along with alkalis (Na₂O+K₂O) increasing in the TAS diagram. Binary diagrams from Marapicu massif samples present linear correlations without large compositional variations, which it is indicative of fractional crystallization with or without assimilation.

▶ | <u>ह</u>∲<u>ट</u> |→</mark>

Figure 7. Harker diagrams for major elements from Marapicu Alkaline Massif. Samples MAR-24 and MAR-28C were not ploted.

◆+ E\$∃ +◆

►I E\$∃ I→

Figure 9. Rare earth elements plot by Boynton (1984) for syenites and phonolites of the Marapicu massif. Note general pattern with enrichment of light rare earth elements related to heavy rare earth elements and Eu negative anomaly. Triangle represents plutonic nepheline syenites and syenites, filled squares represents phonolites, open square and asterisk represents basic rocks.

Figure 11. Age spectra showing plateau age of 80.46 \pm 0.58 with a MSWD = 1.08.

Figure 13. Inverse isochron with step heating data of hornblende providing the age of (80.27 \pm 0.62 Ma).

Figure 10. Spidergram primitive mantle normalized by Sun & McDonough (1989). Note depletion in Ba, Sr, P and Ti and enrichment of Rb, Th, U, Nb and Pb. Triangle represents plutonic nepheline syenites and syenites, filled squares represents phonolites, open square and asterisk represents basic rocks.

Figure 12. K/Ca ratio showing a K-rich component at the low-temperature steps and relatively constant compositions for the medium to high temperature steps.

Both Al_2O_3 and Na_2O presents higher concentrations in the most evaluated members (nepheline syenites and phonolites) whereas MgO, CaO, TiO₂ and P₂O₅ shows higher concentrations in syenites. Fe₂O₃ contents have no significant concentration difference for analyzed lithotypes. The negative linear correlation of Na₂O is related to the fractionation of the feldspar as a main mineral phase. The major elements presents poor linear correlation with silica (except for Na₂O and K₂O) according to their R² values which not permit to make reliable insights. The variation diagrams presented in the Figure 8 shows the negative linear correlation for Rb, Pb, Th, Y and U whereas Ba, Sr and Eu presents data dispersion. U, Th, Pb e Rb are markedly more concentrated in the nepheline syenites and phonolites than in syenites, Y have not so clear behavior. For Sr, Ba and Eu the concentrations are less easily detachable among the lithotypes. The negative linear correlation observed for Rb is related to fractionating of K-feldspar, main modal phase in these rocks, decreasing of Y is coherent with fractionation of apatite which is an accessory phase present in the mode.

Light Rare earth elements are more fractionated than heavy rare earth elements indicating a mantle source enriched in these elements such as Enriched Mantle 1 (EM1), Enriched Mantle 2 (EM2) or Ocean Island Basalts (OIB). The multielement spidergram presented shows depletion for Ba, Sr, P and Ti whereas Th, U, Pb and Zr are enriched. Depletion for Ba is coherent with the fractionation of K-feldspar (also indicated by the Sr depletion), biotite and hornblende. Depletion for P is corroborating by apatite fractionation and Ti for titanite fractionation, all of these phases are presents in the modal assemblage. Both MAR-28C and MAR-24 samples have not genetic relationship with the studied series despite of their high REE content related to the other samples.

Both Sr and Nd isotopic data from literature (Morbidelli *et al.*, 1995; Mota, 2008, 2012) corroborate a magma origin from an astenospheric mantle. Such isotopic studies also indicating preferentially enriched mantle sources as EM1 or EM2 and the Pb isotopic results suggest an array among Mid-Ocean Ridge Basalt (MORB), OIB and EM2, indicating a mixture of two mantle components. The Pb isotopic data from the Tristan da Cunha Island presents similarities with the Pb isotopic signatures from alkaline intrusions and it is different of the signature observed in the Trindade and Açores ocean islands.

Structural geology and geophysics studies (magnetometry and gravimetry) Mota (2008) indicate that alkaline intrusions have little geometric relationship with the structural features from the basement, where the contacts forming rounded boundaries moreover isotropic texture observed on the samples. On the other hand, the alkaline intrusion presents regional distribution suggesting agreement alignment with the regional structural features from Neoproterozoic Ribeira Orogen and in addition have close relationship with the Cenozoic sediments. This correlation may be genetically interpreted where the extensional stresses which forming the basins also would be that responsible for alkaline magma intrusions.

CONCLUSION

The ⁴⁰Ar/³⁹Ar age presented in this work is the older for Poços de Caldas-Cabo Frio magmatic lineament. This fact do not support the idea of age decreasing from west to east in this magmatic province (Herz, 1977; Thomaz Filho & Rodrigues, 1999) based on K-Ar ages. According to this model, the passage of the South American Plate over a hot spot would generate a perfectly age decreasing among the emplaced bodies. Indeed, considering the experimental errors associated with K-Ar ages (3 Ma), support this model. However, new methodologies applied to the alkaline rocks may bring different interpretations and contribute to the knowledge for these magmatic manifestations. This way, more accurate ⁴⁰Ar/³⁹Ar dating shows that Marapicu Massif with 80 Ma is older than Poços de Caldas and Itatiaia (K-Ar ages of 74.6 Ma and 73.1 Ma respectively) which would be older considering their geographic location. This data shows how complex is the passage of the hot spot through the continental crust.

The data presented in this work together with those already published lead for two probably models: the first model take account the existence of a mantle plume originated into the asthenosphere from enriched sources (probably of deep subduction of continental crust slabs in previous events). The hot spot ways was recorded on the continental crust, even though being less marked than oceanic crust, due to their greater thickness. Generally, the trajectory of the hot spots are responsible

►+ E\$∃ +→

for kimberlitics and lamproitics body generation besides the alkaline complexes and carbonatite. It is in agreement with this model the petrologic, isotopic and geochemistry data, and the ⁴⁰Ar/³⁹Ar age.

On the other hand, both isotopic and geochemistry data from Trindade may not enable relate the alkaline rocks from continent with this island rocks. The secondly proposed model, in agreement with the recent ⁴⁰Ar/³⁹Ar data, suggest a crustal flexure. In this way, the sediments deposited into the continental shelf trigged a stress so that flexure the continental crust producing deep fractures allowing the entering of the mantellic magmas. Thus, future geochronology works of the alkaline rocks will provide fundamental information to the understanding questions about southeast Brazilian alkaline rocks genesis.

ACKNOWLEDGEMENT

The present research work has been performed under the financial support of Rio de Janeiro State University, Brazil. Part of the fieldwork instruments, office materials, and the resources of the informatics is supported by the FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Carlos Chagas Filho). The chemical analyses were performed by Activation Laboratories Ltd., Ontario, Canada. The 40Ar/39Ar analyses were performed at the Western Australian Argon Isotope Facility at Curtin University. The authors are grateful to the abovementioned institutions.

REFERENCES

ALMEIDA, F. F. M., 1976. The system of continental rifts bordering the Santos basin, Brazil. **Anais da Academia Brasileira de Ciências** 48(supl.): 15-26.

ALMEIDA, F. F. M., 1983. Relações tectônicas das rochas alcalinas mesozóicas da região meridional da Plataforma Sul-Americana. **Revista Brasileira de Geociências** 13(3): 139-158.

ALMEIDA, F. F. M., 1986. Distribuição regional e relações tectônicas do magmatismo pós-paleozóico no Brasil. **Revista Brasileira de Geociências** 16(4): 325-349.

ALMEIDA, F. F. M., 1991. O alinhamento magmático de Cabo Frio. Atas do Simpósio de Geologia do Sudeste 2: 423-428.

ALMEIDA, F. F. M., C. D. R. CARNEIRO & A. M. P. MIZUSAKI, 1996. Correlação do magmatismo da margem continental brasileira com o das áreas emersas adjacentes. **Revista Brasileira de Geociências** 26(3): 125-138.

BOYNTON, W. V., 1984. Cosmochemistry of the rare-earth elements: meteorite studies. In: P. HENDERSON (Ed.): **Rare-earth** elements geochemistry: 63-114. Elsevier, Amsterdam.

COX, K. G., J. D. BELL&R. J. PANKHURST, 1979. The interpretation of igneous rocks: 1-450. George Allen and Unwin, London.

FAINSTEIN, R. & C. P. SUMMERHAYES, 1982. Structure and origin of marginal banks off eastern Brazil. **Marine Geology** 46(3-4): 199-215.

FREITAS, R. O., 1947. **Jazimentos de rochas alcalinas da ilha de São Sebastião**: 1-244. Faculdade de Filosofia Ciências e Letras (Boletim 85, Geologia 3), São Paulo.

GIBSON, S. A., R. N. THOMPSON, O. H. LEONARDOS, A. P. DICKIN & J. G. MITCHELL, 1995. The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. Journal of Petrology 36: 189-229.

GORINI, M. A. & G. M. BRYAN, 1976. The tectonic fabric of the equatorial Atlantic and adjoining continental margins: gulf of Guinea to northeastern Brazil. Anais da Academia Brasileira de Ciências Rio de Janeiro 48(supl.): 101-119.

HERZ, N., 1977. Timing of spreading in the South Atlantic: information from Brazilian alkalic rocks. **Geological Society of America Bulletin** 88(1): 101-112.

KLEIN, V. C., 1993. O vulcão alcalino de Nova Iguaçu (estado do Rio de Janeiro): controle estrutural e processo de erupção. Tese (Doutorado em Geociências) – Universidade Federal do Rio de Janeiro, Rio de Janeiro.

KLEIN, V. C. & A. C. VIEIRA, 1980. Vulcões do Rio de Janeiro: breve geologia e perspectivas. Mineração e Metalurgia 419: 44-46.

KOPPERS, A. A. P., 2002. ArArCALC-software for ⁴⁰Ar/³⁹Ar age calculations. **Computers and Geosciences** 28(5): 605-619.

LEE, J. Y., K. MARTI, J. P. SEVERINGHAUS, K. KAWAMURA, H.-S. YOO, J. B. LEE, J. S. KIM, 2006. A redetermination of the isotopic abundance of atmospheric Ar. **Geochimica et Cosmochimica Acta** 70(17): 4507-4512.

MORBIDELLI, L., C. B. GOMES, L. BECCALUVA, P. BROTZU, A. M. CONTE, E. RUBERTI & G. TRAVERSA, 1995. Mineralogical, petrological and geochemical aspects of alkaline and alkalinecarbonatite associations from Brazil. **Earth-Science Reviews** 39(3-4): 135-168.

◆+ E\$∃ +◆

MOTA, C. E. M., 2008. Estudos geológicos e gravimétricos do Complexo Marapicu-Gericinó-Mendanha, Rio de Janeiro. Dissertação (Mestrado em Análise de Bacias e Faixas Móveis) – Universidade do Estado do Rio de Janeiro, Rio de Janeiro.

MOTA, C. E. M., 2012. Petrogênese e geocronologia das intrusões alcalinas de Morro Redondo, Mendanha e Morro de São João: caracterização do magmatismo alcalino no estado do Rio de Janeiro e implicações geodinâmicas. Tese (Doutorado em Geologia) – Universidade do Estado do Rio de Janeiro, Rio de Janeiro.

RENNE, P. R., R. MUNDIL, G. BALCO, K. MIN & K. R. LUDWIG, 2010. Joint determination of ⁴⁰K decay constants and ⁴⁰Ar*/⁴⁰K for the Fish Canyon sanidine standard, and improved accuracy for ⁴⁰Ar/³⁹Ar geochronology. **Geochimica et Cosmochimica Acta** 74(18): 5349-5367.

SHAND, S. J., 1943. **Eruptive rocks**. Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. John Wiley and Sons, New York.

SUN, S. S. & W. F. MCDONOUGH, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. **Geological Society** 42: 313-345.

THOMAZ FILHO, A. & A. L. RODRIGUES, 1999. O alinhamento de rochas alcalinas Poços de Caldas-Cabo Frio (RJ) e sua continuidade na cadeia Vitória Trindade. **Revista Brasileira de Geociências** 29(2): 275-280.

THOMAZ FILHO, A., A. M. P. MIZUSAKI, E. J. MILANI & P. CESERO, 2000. Rifting and magmatism associated with the South America and Africa breakup. **Revista Brasileira de Geociências** 30(1): 17-19.

THOMAZ FILHO, A., E. GUEDES, M. HEILBRON, P. M. VASCONCELOS, C. M. VALERIANO, J. C. H. ALMEIDA & W. TEIXEIRA, 2005. K–Ar and ⁴⁰Ar/³⁹Ar ages of dikes emplaced in the onshore basement of the Santos Basin, Resende area, SE Brazil: implications for the south Atlantic opening and Tertiary reactivation. Journal of South American Earth Sciences 18(3-4): 371-382.

THOMPSON, R. N., S. A. GIBSON, J. G. MITCHELL, A. P. DICKIN, O. H. LEONARDOS, J. A. BROD & J. C. GREENWOOD, 1998. Migrating Cretaceous-Eocene magmatism in the Serra do Mar Alkaline Province, SE Brazil: melts from the deflected Trinidade mantle plume? **Journal of Petrology** 39: 1493-1526.

ULBRICH, H. H. G. J. & C. B. GOMES, 1981. Alkaline rocks from continental Brazil. **Earth-Science Reviews** 17(1-2): 135-154.

<u>++ ₹\$₹ ++</u>

	(

APPENDIX. Geochemistry data of the 27 analyzed samples from Marapicu massif, classification is according to Cox et al. (1979).

APPENDIX.	. Geochemistry	data of the 27 a	Inalyzed	samples .	from Ma	rapicu m	assif, clas	sification	i is accon	ding to (Cox et al	. (1979).				(Co	ntinue)
Analyte symbol	Classification	(Na+K)/AI mol	SiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K20	TiO ₂	$P_{2}O_{5}$	IOI	Total	Sc	Pb	>
MAR-28C	Basanite/ tephrite	0.75179718	47.5	15.55	8.24	0.157	7.02	8.51	4.87	3.39	1.541	0.45	2.01	99.24	20	13	183
MAR-01D	Nepheline syenite	0.94861556	59.94	20.17	3.96	0.161	0.05	1.2	7.62	6.08	0.073	0.02	1.11	100.4	V	17	د ک
MAR-03	Nepheline syenite	0.90494555	59.07	18.51	5.64	0.206	0.27	1.77	9	6.34	0.229	0.1	1.41	99.54	V V	14	~ ~
MAR-10B	Nepheline syenite	0.9372604	57.43	21.72	2.91	0.127	0.06	0.92	8.72	5.54	0.081	0.04	1.23	98.79	~ V	19	
MAR-17B	Nepheline syenite	0.95989968	58.94	19.03	5.11	0.204	0.08	1.31	7.39	5.63	0.145	0.05	0.69	98.56	V V	6	∼ 2
MAR-19A	Nepheline syenite	0.94660567	61.36	20.59	1.92	0.051	0.04	0.41	8.18	5.56	0.025	0.05	0.48	98.68	~ ~	16	
MAR-27	Nepheline syenite	0.86729414	57.17	17.79	7.07	0.223	0.89	2.49	5.83	5.38	0.618	0.34	2.17	99.97	2	17	19
MAR-02B	Phonolite	1.11998785	54.09	20.09	3.85	0.233	0.08	0.92	9.66	6.09	0.244	0.03	3.95	99.22	<	42	< 5
MAR-04C	Phonolite	0.99073902	56.63	19.24	4.88	0.204	0.18	1.35	7.55	6.12	0.176	0.07	2.84	99.26	- V	20	ک ۲
MAR-05A	Phonolite	0.96885795	56.4	19.28	4.94	0.209	0.17	1.32	7.41	5.98	0.171	0.07	2.5	98.44	- V	21	ک ا
MAR-06A	Phonolite	0.90939645	57.35	19.2	4.14	0.149	0.35	1.87	6.57	6.13	0.418	0.11	2.09	98.38	<	17	< 5
MAR-07	Phonolite	0.91783444	57.75	19.84	4.3	0.155	0.36	1.85	6.92	6.29	0.447	0.13	2.1	100.1	~	16	9
MAR-09A	Phonolite	1.05440313	57.23	20.35	3.66	0.175	0.12	0.98	9.25	5.75	0.148	0.04	1.57	99.28	~	31	S
MAR-15	Phonolite	1.18632374	53.46	19.38	4.74	0.285	0.08	1.08	10.71	4.95	0.246	0.04	4.01	98.99	<	52	< 5
MAR-18	Phonolite	1.0163233	56.06	20.88	3.75	0.198	0.02	1.05	9.08	5.79	0.073	0.01	1.28	98.2	- V	26	≥ N
MAR-19B	Phonolite	0.95590523	57.15	19.1	4.13	0.169	0.17	1.43	7.18	5.94	0.258	0.06	3.16	98.76	<	23	< 5
MAR-22B	Phonolite	0.93557036	58.72	18.49	5.73	0.238	0.45	1.94	6.63	5.89	0.475	0.2	0.92	99.68	- V	13	< 5 2
MAR-22C	Phonolite	1.03139422	56.41	20.3	3.27	0.134	0.15	1.04	6	5.65	0.263	0.07	2.61	98.9	V	34	5
MAR-28B	Phonolite	1.0424381	57.44	19.5	4.45	0.19	0.27	1.24	8.88	5.27	0.382	0.09	1.56	99.27	~	49	10
MAR-24	Phonolitic tephrite	0.82921419	52.35	16.78	9.01	0.274	2.5	5.66	5.14	5.03	1.493	0.63	1.08	99.95	ω	7	121
MAR-01A	Syenite	0.91943998	61.02	18.38	3.72	0.128	0.23	1.64	6.13	6.28	0.255	0.09	1.08	98.95	V	13	∼ 2
MAR-06B	Syenite	0.90082148	61.18	19.3	3.03	0.096	0.17	1.33	6.34	6.41	0.209	0.09	0.95	99.1	V	6	∼ 2
MAR-13C	Syenite	0.92133899	60.06	18.7	4.16	0.141	0.29	1.69	6.37	6.22	0.302	0.11	0.86	98.9	V	13	° ℃

Bol. Mus. Para. Emílio Goeldi. Cienc. Nat., Belém, v. 10, n. 3, p. 399-422, set-dez. 2015

<u>- ₹\$∃ +</u>→

(Continue)

APPENDIX.

>	د د	∿ V	ک ا	19	Sn	2	7	4	ъ	8	2	4	11	4	ъ	m	Μ	9	11	9	5	9
Pb	4	15	15	15	IJ	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Sc	V	V	- V	2	ЧL	5.7	20.8	17	35.2	42.7	16.3	16.2	49.2	20.3	22.6	15.3	16.3	34.1	71.8	23.5	23.7	17.3
Total	100.2	99.35	98.51	99.01	δ	2	< 2	c	m	< 2	< 2	c	13	5	7	ω	m	m	21	2	10	< 2
FOI	0.69	0.72	1.6	2.35	qN	75	115	169	110	203	15	154	302	156	170	104	114	151	353	136	123	140
0	08	1.0	.13	24	ß	120	166	175	206	176	215	178	332	199	208	173	185	258	365	238	216	193
	4 0.	18	8	65 <u>0</u> .	As	V V	V V	V V		√ ℃		د د	ω	< 5	∧ ∿	∼ 2	∧ ∪	∼ N	11	V V	< 5	د د
0 II	0.2	0.3	0.2	0.4	ge	-	Ļ	2	2	2	Ļ	2	2	2	2	-	~	2	2	-	-	2
К 0	6.42	6.24	5.94	5.4	Ga	18	28	23	30	31	29	23	42	26	28	22	24	30	43	30	26	27
Na_2O	6.55	5.88	5.98	6.29	Zu	06	120	110	100	130	40	150	180	120	130	100	110	130	240	130	120	160
CaO	1.46	1.85	1.83	2.17	Cr	70	10	6 10	10 0	< 10	> 10	10 10	<pre>> () () () () () () () () () () () () ()</pre>	< 10	<pre></pre>	<pre>> () () () () () () () () () () () () ()</pre>	<pre>> () () () () () () () () () () () () ()</pre>	<pre>> () () () () () () () () () () () () ()</pre>	<pre></pre>	< 10	< 10	<pre>> () () () () () () () () () () () () ()</pre>
OgM	0.2	0.36	0.27	0.63	ī	130	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
MnO	0.109	0.155	0.171	0.148	S	37	35	37	23	<i>LL</i>	28	19	25	19	37	30	40	22	48	26	102	13
	3.34	4.67	4.83	4.72	ŗ	370	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
¹ O ₃	9.29	3.25	3.22	8.11	Zr	188	517	551	498	877	166	553	1399	583	606	517	546	779	1658	616	737	458
02 2	87 19	8.	26 18	49 1	\succ	20	21	26	27	39	ω	26	44	29	36	20	22	25	59	30	22	28
Sic	9 61.	4 60	9 59	2 58.	Sr	833	83	92	112	62	62	605	74	59	52	838	837	62	82	9	115	393
a+K)/A mol	197609	010746	937209	949552	Ba	1316	83	124	174	118	62	1006	19	59	117	1531	1539	76	67	4	133	1350
Z,	0.9	0.9	0.8	0 ^{.8}	ation	te/ te	line te	line te	line te	line te	line te	line te	lite	lite	lite	lite	lite	lite	lite	lite	lite	lite
Classification	Syenite	Syenite	Syenite	Syenite	Classifica	Basanii tephri	Nephel syenit	Nephel syenit	Nephel syenit	Nephel syenit	Nephel syenit	Nephel syenit	Phono	Phono	Phono	Phono	Phono	Phono	Phono	Phono	Phono	Phono
Analyte C symbol	MAR-16A	MAR-16C	MAR-20	MAR-26	Analyte symbol	MAR-28C	MAR-01D	MAR-03	MAR-10B	MAR-17B	MAR-19A	MAR-27	MAR-02B	MAR-04C	MAR-05A	MAR-06A	MAR-07	MAR-09A	MAR-15	MAR-18	MAR-19B	MAR-22B

⁴⁰Ar/^{β9}Ar age, lithogeochemistry and petrographic studies of the Cretaceous Alkaline Marapicu Intrusion, Rio de Janeiro, Brazil

►I E\$∃ I→

	\neg	
	\Box	
1	₽	
	\Box	
	0	
()	

	(>	1	(((1	((ā	=	2	F	. <u>C</u>	ntinue)
cation Ba Sr Y Zr Cr (Sr Y Zr Cr C	Y Zr Cr 0	Zr Cr (с С	\cup	0	ī	J	Zn	Ga	e	As	ď	qN	δ	Ę	Ē	Sn
olite 142 106 24 1018 < 20	106 24 1018 < 20	24 1018 < 20	1018 < 20	< 20		24	< 20	10	120	32	~	∼ S	283	191	5	53.1	< 0.2	5
olite 123 100 27 1140 < 20	100 27 1140 < 20	27 1140 < 20	1140 < 20	< 20		39	< 20	< 10	200	39	2	∠ ℃	344	183	< 2	76.2	< 0.2	10
olitic 1693 920 36 431 < 20	920 36 431 < 20	36 431 < 20	431 < 20	< 20		23	30	20	150	23	2		06	145	M	8.2	< 0.2	c
nite 1066 511 19 383 < 20	511 19 383 < 20	19 383 < 20	383 < 20	< 20		23	< 20	< 10	70	21	~	2	155	105	2	13.1	< 0.2	m
nite 1124 533 13 249 < 20	533 13 249 < 20	13 249 < 2C	249 < 20	< 20		29	< 20	< 10	50	20	-	< 5	141	76	3	10.4	< 0.2	2
hite 1048 472 18 308 < 20	472 18 308 < 20	18 308 < 20	308 < 20	< 2(0	59	< 20	< 10	70	21	-	< 5	152	106	3	13.5	< 0.2	С
hite 1283 617 16 371 < 20	617 16 371 < 20	16 $371 < 20$	371 < 20	< 2(0	4	< 20	< 10	60	19	~	∼ S	140	86	9	12	< 0.2	2
nite 586 338 20 354 < 20	338 20 354 < 20	20 354 < 20	354 < 20	< 2(0	17	< 20	< 10	80	21	-	< 5	167	121	< 2	12.2	< 0.2	С
hite 1035 446 21 409 < 20	446 21 409 < 20	21 409 < 20	409 < 2C	< 20		46	< 20	< 10	06	23	2	< 5	200	118	4	13.6	< 0.2	4
nite 867 546 22 566 < 20	546 22 566 < 20	22 566 < 20	566 < 20	< 20		23	< 20	< 10	06	22	~	ک ک	160	120	4	22.8	< 0.2	Μ
cation Sb Cs La Ce Pr	Cs La Ce Pr	La Ce	Ge Ce			PZ	Sm	E	PG	Ъ	Dy	Р	Ľ.	ЦЦ	٩۲ م	L	Ť	
hite/ < 0.5 2.9 38.9 72.1 7.9	2.9 38.9 72.1 7.9	38.9 72.1 7.9	72.1 7.9	7.9		29.7	5.6	1.74	4.8	0.7	4	0.8	2.1	0.31	2	0.33	4.3	1.2
eline 0.6 1.2 96.4 175 14.	1.2 96.4 175 14.	96.4 175 14.	175 14	14.		42.9	5.9	0.71	4.2	0.6	3.6	0.7	2.2	0.37	2.5	0.39	11.6	4.2
eline < 0.5 2.2 85.3 159 16 hite	2.2 85.3 159 16	85.3 159 16	159 16	16	▶.	54.3	8.2	1.04	9	0.9	5	0.9	2.7	0.43	С	0.53	12.1	Μ
eline < 0.5 3.3 146 211 18 hite	3.3 146 211 18	146 211 18	211 18	18		52.6	7.2	1.1	5.6	0.9	5	1	3	0.47	3.2	0.51	10.9	6.8
eline < 0.5 0.7 154 267 2	0.7 154 267 2.	154 267 2	267 2,	2	6.1	79.4	11.3	0.85	8.7	1.3	7.4	1.4	4.4	0.7	4.8	0.82	17.7	8.2
eline < 0.5 2.7 51.4 75.7 6.	2.7 51.4 75.7 6.	51.4 75.7 6.	75.7 6.	.9	13	15.9	2.1	0.27	1.6	0.3	1.5	0.3	0.9	0.15	1.1	0.19	3.5	2.4
eline < 0.5 3.6 85.3 143 15 nite	3.6 85.3 143 15	85.3 143 15	143 15	15	ω.	51.8	7.7	1.7	5.9	0.9	4.7	0.9	2.6	0.39	2.7	0.48	11.4	4
olite 0.6 7.1 165 243 19	7.1 165 243 19	165 243 19	243 19	<u> </u>	9.8	50.7	6.5	1.18	9	-	6.3	1.4	4.8	0.84	5.8	0.93	25.7	13
olite < 0.5 3 89.3 159 1	3 89.3 159 1	89.3 159 1	159 1		6.4	52.7	8	0.89	6.1	0.9	5.3	1	3.1	0.49	3.3	0.56	11.7	4.9
olite < 0.5 3.8 127 184 2	3.8 127 184 2	127 184 2	184	(1	24.5	78.5	11.7	1.32	8.9	1.3	7.2	1.4	4.1	0.64	4.4	0.71	13	5.4

<u>+ E\$∃ +</u>

	-	-								(Conc	lusion)
ttion Sb Cs La Ce	Pr Nd Sm	Eu	Дþ	Dy	Р́	ц	Е Н	ЧЪ	Lu	Ť	\supset
lite < 0.5 2 68.8 122	12.4 39.3 5.5 1	1.77 4.3	0.6	3.5	0.7	2.1	0.34	2.3	0.39	10.1	3.5
lite < 0.5 2.4 83.6 136	14.4 45.6 6.4 1	1.82 4.5	0.7	3.9	0.7	2.3	0.37	2.5	0.42	10.6	3.7
lite < 0.5) 13 35.8 5 (0.6 4	0.7	4	0.9	2.8	0.49	3.5	0.59	14.8	8.6
lite 0.8 12.7 206 32.	6 30.1 87.4 12.3	2.1 10.5	1.7	10	2.1	6.7	1.12	7.4	1.14	29.5	18.9
lite < 0.5 2.7 103 17	3 15.9 46.4 6.4 0	0.52 5.1	0.8	5	-	3.2	0.53	3.5	0.58	12.4	5.5
lite < 0.5 3.9 86.2 14	9 14.3 43 6 0	0.95 4.2	0.7	3.9	0.8	2.4	0.4	2.8	0.48	14.4	5.3
lite < 0.5 0.9 101 17.	5 17.4 55 8.1 1.	1.83 6.2	0.9	5.3	-	3.1	0.5	3.3	0.55	11.6	3.4
lite < 0.5 5.9 89.8 13	6 11.7 33.6 4.7 0	0.83 3.7	0.6	3.8	0.8	2.7	0.47	3.4	0.57	18	17.5
lite 0.5 6 133 20	6 18 50.6 7.2 0	0.88 5.7	0.9	4.8	0.9	2.9	0.49	3.7	0.64	21.3	50
litic < 0.5 < 0.5 108 20	6 22.5 77.9 12.5 2	2.71 9.2	1.4	7.5	1.4	3.9	0.56	3.6	0.62	10.4	1.6
te < 0.5 2.1 71 12	25 12.2 39.6 5.9 1.	1.89 4.5	0.7	3.6	0.7	2.1	0.32	2.2	0.36	8.4	m
ie < 0.5 1.4 51.4 91	.1 9.09 29.2 4.3 1.	1.59 3	0.5	2.6	0.5	4.1	0.21	1.4	0.25	5.5	5
te < 0.5 1.8 63.8 11	8 12.3 40.2 6 1.	1.74 4.4	0.7	3.6	0.7	2	0.3	2	0.34	7.2	2.7
te < 0.5 1.6 51.1 90.	5 9.09 29.3 4.3 1	1.61 3.1	0.5	2.7	0.5	1.6	0.26	1.7	0.3	6.8	2.2
ie < 0.5 1.8 67.3 12	7 13.6 45.5 6.9 1.	1.68 5.1	0.7	4.1	0.7	2.2	0.32	2.2	0.39	8.2	2.2
ie < 0.5 2.5 74.2 1 ⁴	H 14.6 47.6 7 1.	1.55 5.1	0.8	4.3	0.8	2.4	0.36	2.5	0.45	9.3	2.7
te < 0.5 2.4 68.3 120	0 12 38.9 6	1.6 4.6	0.7	3.9	0.8	2.4	0.39	2.7	0.45	10.1	7.4

⁴⁰Ar/^{β9}Ar age, lithogeochemistry and petrographic studies of the Cretaceous Alkaline Marapicu Intrusion, Rio de Janeiro, Brazil